Ventilation, Indoor Moisture Loads, Humidity Control, and Energy Efficiency

Books and Research Reports

Perkins+Will Canada

Greenhouse Gas Implications of HVAC Upgrades in Multi-Unit Residential Buildings

Burnaby, BC, Canada: Homeowner Protection Office

2015

This Research Report explores best practices and approaches for reducing greenhouse gas (GHG) emissions through heating, ventilation, and air-conditioning (HVAC) upgrades in multi-unit residential buildings (MURBs) in British Columbia. The aim of this Research Report is to support industry in making informed HVAC upgrade decisions that can lead to greenhouse gas savings. As heating energy accounts for approximately 65% of the total energy consumption, focusing on improving energy efficiency for heating the building, fresh air and domestic hot water provides the most opportunity for reductions. A checklist of different upgrade opportunities to consider is presented. Commissioned by BC Housing and prepared by Perkins+Will, this report is based on:

- a review of industry best practices;
- research previously completed by Perkins+Will for BC Housing on greenhouse gas reduction strategies for MURBs through HVAC upgrades; and,

Available at: HPO

Canada Mortgage and Housing Corporation

Approaching Net-Zero Energy in Existing Housing

Ottawa: Canada Mortgage and Housing Corporation

2008

“CMHC defines .net-zero energy housing. as a home that produces as much energy as it consumes annually. This research looks at existing homes of different types and ages in various climatic regions across Canada in an effort to determine the technical feasibility of retrofitting to achieve net-zero energy consumption. Building envelope upgrades are critical, with photovoltaic (PV) systems, high-performance windows, and high-efficiency heating and ventilation equipment also contributing to savings. Some existing houses could be transformed to net zero energy. The methods and costs are outlined in the report.”

Available at: CMHC

RDH Building Engineering Ltd., Innes Hood Consulting, Ken Farrish Marketing and Constructive Home Solutions

Best Practices fro Air Sealing and Insulation Retrofits

Burnaby, BC, Canada: Homeowner Protection Office

2015

This guide consolidates best practices for air sealing and insulation weatherization work in an easy to follow format. A valuable reference tool for builders and other industry professionals, it
addresses British Columbia’s unique climate, construction practices, and building code requirements. Available only online, the guide includes: Procedures for common air sealing and insulation installation measures for attics/roofs, above-grade walls, basements, crawlspaces and floors. Contractor checklist for home air sealing and insulation procedures. Homeowner tips to assist with operation and maintenance. Health and safety considerations. Extensive list of additional resources and references.

Available at: HPO

Canada Mortgage and Housing Corporation
Field Testing to Characterize Suite Ventilation in Recently Constructed Mid- and High-rise Residential Buildings.
Ottawa: Canada Mortgage and Housing Corporation
1999

“Mechanical ventilation systems in multi-unit residential buildings typically consist of central corridor air supply systems and central, or individual, suite exhaust systems. This approach has not significantly changed over the past 30 years despite evidence that such systems are neither effective nor efficient. This research project conducted a study of 10 mid- and high-rise residential buildings to assess the performance of the mechanical ventilation systems and to identify influencing design, installation, operational, and environmental factors. The study provides many useful insights as to why conventional ventilation strategies are unable to meet the ventilation requirements of multi-unit residential buildings.”

Available at: CMHC

Canada Mortgage and Housing Corporation
Investigating Moisture in Seasonal Housing
Ottawa: Canada Mortgage and Housing Corporation
2001

“This research looked at the sources of moisture problems in dwellings that remain unoccupied for long periods of time. Changes were recommended to counter the identified moisture problems. Foundation problems were identified as the primary source of excessive humidity; there was also some evidence of temperature and humidity conditions leading to spring/winter condensation.”

Available at: CMHC

Canada Mortgage and Housing Corporation
Achieving Healthy Indoor Environments: A Review of Canadian Options
Ottawa: Canada Mortgage and Housing Corporation
2002

“There is convincing evidence that poor indoor air quality (IAQ) is a top environmental risk to human health. This report explores the question of whether government regulations or voluntary initiatives are more appropriate for solving indoor air quality problems.”

Available at: CMHC

Canada Mortgage and Housing Corporation
Compliance of Ventilation Systems Installed to Meet Proposed Changes to the 1995 NBCC
Ottawa: Canada Mortgage and Housing Corporation
2002
“The research program involved inspecting and testing houses with ventilation systems designed and
installed to meet the proposed residential ventilation requirements. The study was to evaluate the
effectiveness of the proposed code changes at dealing with shortcomings in the 1995 National
Building Code of Canada (NBCC).”
Available at: CMHC

Canada Mortgage and Housing Corporation
Ventilation Systems for Multi-Unit Residential Buildings: Performance Requirements and Alternative
Approaches
Ottawa: Canada Mortgage and Housing Corporation
2003
“Multi-unit residential buildings (MURBs) represent a significant and growing proportion of
housing in Canada. While there have been many advances in building technologies, ventilation
strategies have not changed significantly over the past three decades. Existing ventilation
systems are unsatisfactory in most aspects. This project established reasonable ventilation rates
and related performance parameters. Four possible alternative systems were analyzed for benefits
and drawbacks. Most are still in their early stages of development and will need more research,
but the housing industry can help support these alternative approaches.”
Available at: CMHC

Canada Mortgage and Housing Corporation
Improved Make-Up Air Supply Techniques
Ottawa: Canada Mortgage and Housing Corporation
2004
“As houses become more airtight, natural leakage is not adequate to replace exhausted air. This
research examined systems that bring fresh air into the house, and generally found them
inadequate. Passive and fan-based techniques were studied, as well as a prototype system built
specially for the purpose. Since the publishing of this work, there has been an increasing trend
to the installation of backdraft-resistant appliances, due to changes in codes, standards, and
industry practice in Canada.”
Available at: CMHC

Canada Mortgage and Housing Corporation
Analysis of Ventilation System Performance in New Ontario Houses
Ottawa: Canada Mortgage and Housing Corporation
2004
“As newly built homes become more airtight, proper ventilation becomes more important, due to the
potential for combustion spillage. The current Ontario building code allows for the independent
operation of the exhaust-only ventilation system (EOV) and the furnace circulation fan. A
recent survey of new homes shows that three-quarters have the EOV system, and of those, only some
13% of owners use the system properly. Future Ontario codes should require the interlock of the
ventilation fan and the circulating fan.”
Ventilation strategies for apartments have not changed significantly over the past 30 years, despite significant evolutions in design and construction. CMHC evaluated seven prototypes of an integrated ventilation-space conditioning (VSC) system that combines the function and familiarity of vertical fan-coil units with an innovative heat recovery ventilation (HRV) system. Research found that there are now viable alternatives to conventional ventilation systems that are both possible and practical. However, there are still many unexplored issues surrounding the design, installation and performance of in-suite ventilation systems in multi-unit buildings that must be addressed before the application of in-suite systems becomes commonplace.”

Canadian homes built in the last several decades are too tight to provide the right amount of ventilation by random infiltration. This research, analysing homes in Ottawa, Vancouver and Saskatoon, looks at when supplemental mechanical ventilation might be needed. Based on the assumption that houses need ventilation rates of at least 0.3 air changes per hour, research found tight houses in cold climates, such as Saskatoon, required additional mechanical ventilation practically the whole year to reach that target. In Vancouver, where houses are less airtight, natural ventilation can be adequate for longer periods. The research confirms the need for mechanical ventilation generally, and can help builders or homeowners by showing when to activate ventilation systems.”

The objectives of this study were to determine a practical and cost-effective method of assessing the effectiveness of dehumidifiers in controlling moisture in houses, and to assess the usefulness of dehumidifiers in controlling general moisture conditions in houses in different regions of Canada. Results showed that in most regions of Canada, dehumidification is beneficial during the non-heating season, while year-round operation can be beneficial for houses located in milder coastal climates.”

Garden, G.K.
Ventilation, Indoor Moisture Loads, Humidity Control, and Energy Efficiency

Canadian Building Digests, CBD-72
Ottawa: National Research Council of Canada, Division of Building Research
1965

“Air leakage is the uncontrolled movement of air through walls and roofs, both into a building (infiltration) and out of it (exfiltration), and the interchange of air from the building with that in spaces in the building envelope. Pressure differences that cause infiltration and exfiltration are produced by wind, chimney effect, and the operation of mechanical ventilation systems.”

Available at: BCIT, VPL, UBC, NRC-IRC

Hansen, A.T.

Canadian Building Digests, CBD-231
Ottawa: National Research Council of Canada, Division of Building Research
1984

“Winter moisture condensation is probably the most common moisture-related problem that affects houses. In its mildest form, it appears only as harmless surface condensation on windows. In severe cases it causes decay that might affect the structure itself. In between these extremes, it can manifest itself as mildew growth on the interior finish, or as ceiling stains, ceiling leaks or paint peeling.”

Available at: BCIT, VPL, UBC, NRC-IRC

Haysom, J.C. and J.T. Reardon

Construction Technology Updates, No. 14
Ottawa: National Research Council of Canada, Institute for Research in Construction
1998

“A house needs a third of its air exchanged every hour. Owners of houses built before 1960 relied on air leakage through the building envelope for indoor/outdoor air exchanges. And they could, because houses then were leaky enough and wind or temperature difference saw to the necessary air movement. In the 1960s, houses became more airtight, and some were heated electrically (they did not even need a chimney). In the 1970s with its oil crisis, houses became even more airtight. With little air leakage through the building envelope, a mechanical ventilation system is required for moisture and pollutant removal. So, the question now is: how does one ventilate optimally?”

Available at: NRC-IRC

Haysom, J.C. and J.T. Reardon

Construction Technology Updates, No. 15
Ottawa: National Research Council of Canada, Institute for Research in Construction
1998

“In many ways the 1995 National Building Code (NBC) parallels and complements the CSA standard CAN/CSA-F326 in defining current approaches to mechanical ventilation in houses. Whereas F326 does not stipulate a maximum sound output, the NBC, for example, does: 53 decibels. The NBC gives details about the interrelationship of air intake and air output and the role various types of fans must play in houses that are either with or without a forced-air heating system. Houses without a forced-air heating system can also present problems in the even distribution of outdoor
Humidity is one of the most important of the topics that are of special concern in Canadian building design and operation. Low outdoor temperatures in winter give rise to condensation on and in walls and windows and tend to produce low relative humidities indoors. When even moderate humidities must be carried within buildings serious difficulties can be expected unless the designer appreciates fully what humidity is and how it relates to building performance. It is important to realize that what is normally referred to as "humidity" is actually relative humidity. It is a measure of the amount of water vapour present in the air expressed as a percentage of the maximum amount that the air can hold at that particular temperature. When the temperature is changed, the relative humidity changes, since the capacity of the air for holding moisture increases with increasing temperature. These relationships are most conveniently represented graphically in psychometric charts.

Hutcheon, N.B. (editor)
Canadian Building Digests, CBD-1
Ottawa: National Research Council of Canada, Division of Building Research 1960

Available at: VPL, BCIT, UBC, NRC-IRC

Modera/Persily (editors)
STP 1255: Airflow Performance of Building Envelopes, Components and Systems

Available at: www.astm.org

Sherman, M.H. (editor)
STP 1067 Air Change Rate and Airtightness in Buildings

Available at: www.astm.org
peer-reviewed papers appear in sections on tracer gas techniques, air exchange rate measurement, residential airtightness, multizone leakage, and comparison of techniques. For blower door contractors, researchers, specification writers, government agencies.”
Available at: CMHC, www.astm.org

Canada Mortgage and Housing Corporation
Thermostat Settings in Houses with In-floor Heating
Ottawa: Canada Mortgage and Housing Corporation
2001
“An investigation into the relationship of in-floor radiant heating and thermostat settings.”
Available at: CMHC

Canada Mortgage and Housing Corporation
Effects of Thermostat Setting on Energy Consumption
Ottawa: Canada Mortgage and Housing Corporation
2001
“This study measures the energy savings from thermostat setback (in winter) and set forward (in summer) in R-2000 houses at the Canadian Centre for Housing Technology. In order to reduce energy use, many households adjust their thermostat settings when occupants are not at home, or are asleep. The research demonstrates the benefits of this relatively simple energy conservation measure. Results vary in less efficient houses, and set-backs could lead to condensation and mold in some houses.”
Available at: CMHC

Canada Mortgage and Housing Corporation
Assessment of the Energy Performance of Two Gas Combo-Heating Systems
Ottawa: Canada Mortgage and Housing Corporation
2001
“Combo heating systems use a water heater to produce heat for both space heating and domestic hot water heating. This research project compared the performance of two combo systems in the CCHT's test house facility. The tests confirmed that combo systems can meet the combined load requirements of water and space heating for a dwelling.”
Available at: CMHC

Canada Mortgage and Housing Corporation
Case Studies of Major Home Energy Retrofits
Ottawa: Canada Mortgage and Housing Corporation
2003
“Five homeowners in Saskatchewan agreed to implement a variety of retrofit energy saving measures, at their expense, as recommended by the HOT2000 computer model. These ranged from simple items such as compact fluorescent lamps to the retrofit of high efficiency furnaces. Total energy consumption reductions ranged from 24% to the target of 40%. Those not meeting the target could be attributed to homeowners not following all the HOT2000 recommendations and lifestyle changes. Payback periods ranged from 8.4 to 16.5 years. All homeowners were satisfied with the savings they
Canada Mortgage and Housing Corporation

Energy Needs and Availability in Housing
Ottawa: Canada Mortgage and Housing Corporation
2004

“This study estimates the amount and type of energy required to provide a variety of household services, compares these needs with the energy consumed, and determines the sources of energy available in the house and on the lot. The research shows that improved design is required to match household devices to energy needs. Using more waste heat and energy sources with high fuel cycle efficiencies would greatly improve energy ratios and efficiencies. Use of on-site heat recovery and ambient energy should be increased. Solar and wind energy, and geothermal heat could, with the appropriate conversion devices, be utilized to meet significant portions of an efficient dwelling’s energy needs.”

Available at: CMHC

Canada Mortgage and Housing Corporation

Strategies for Reducing Building Energy Use Via Innovative Building Envelope Technologies
Ottawa: Canada Mortgage and Housing Corporation
2004

“Over the past decade, many new technologies have been developed and introduced to the building industry that can recover, generate or save energy at the outer envelope of buildings. This research examined which of these technologies would be most acceptable to the owners of aging multi-unit residential buildings requiring renovations. While several technologies are appealing, such as enclosing balconies, the current economics and risk associated with many of the available technologies can undermine their attractiveness to property owners.”

Available at: CMHC

Canada Mortgage and Housing Corporation

Analysis of Renewable Energy Potential in the Residential Sector through High-Resolution Building-Energy Simulation
Ottawa: Canada Mortgage and Housing Corporation
2008

“This study provides technical assessment of the potential of renewable energy systems, specifically roof-mounted solar photovoltaic (PV), micro-wind turbine, renewable energy-based heating, ventilating and air-conditioning (HVAC), and domestic hot water (DHW), in low-rise housing. The project demonstrates that the generation of renewable energy in the residential sector can lower consumer costs and meet part of the overall energy demand. But it concludes that without significant reduction of the overall energy consumption, these technologies alone cannot meet energy needs in the residential sector.”

Available at: CMHC

Canada Mortgage and Housing Corporation
Drain Water Heat Recovery Performance Testing at CCHT
Ottawa: Canada Mortgage and Housing Corporation
2008
“This report provides test results from a simple energy savings device that recovers waste heat
from showers to preheat domestic hot water. Several models of these drainwater heat recovery
devices were tested at the Canadian Centre for Housing Technology (CCHT). A link to an energy
savings calculator is provided to calculate which brand of device is best suited to your
household.”
Available at: CMHC

Canada Mortgage and Housing Corporation
Monitoring Results for the Factor 9 Home
Ottawa: Canada Mortgage and Housing Corporation
2009
“The Factor 9 Home demonstration project is a single-family residence in Regina, Saskatchewan,
featuring high levels of energy and water-use efficiency. This research project monitored the
home's energy and water use for a one-year period in order to assess whether performance
objectives were being met. A number of indoor air quality indicators were also measured. The
monitoring showed that the house met its target of reducing annual energy usage to about 10% of
the average existing home in Saskatchewan.”
Available at: CMHC

Articles
None

Ampatzi, Eleni; Knight, Ian. 2012. Modelling the effect of realistic domestic energy demand
profiles and internal gains on the predicted performance of solar thermal systems. Energy and
Buildings 0: 285-298
Available at: BCIT, UBC

Asadi, Ehsan; da Silva, Manuel Gameiro; Antunes, Carlos Henggeler; Dias, Luis. 2012. A
multi-objective optimization model for building retrofit strategies using TRNSYS simulations,
GenOpt and MATLAB. Building and Environment 0: 370-378
Available at: BCIT, UBC

estimating tool to predict heating and cooling energy demand for attics of residential buildings.
Energy and Buildings 0: 12-21
Available at: BCIT, UBC

Bagge, Hans; Johansson, Dennis; Lindstrii, Lotti. 2010. Indoor Hygrothermal Conditions in
Multifamily Dwellings - Measurements and Analysis. Thermal Performance of the Exterior Envelopes
Available at: UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Fabi, Valentina; Andersen, Rune Vinther; Corgnati, Stefano; Olesen, Bjarne W.. 2012. Occupants' window opening behaviour: A literature review of factors influencing occupant behaviour and models. *Building and Environment* 0: 188-198
Available at: BCIT, UBC

Available at: Public Libraries of B.C., ASHRAE

Available at: BCIT, UBC

Available at: UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Lou, Wenjuan; Huang, Mingfeng; Zhang, Min; Lin, Ning. 2012. Experimental and zonal modeling for wind pressures on double-skin facades of a tall building. *Energy and Buildings* 0: 179-191
Available at: BCIT, UBC

Available at: BCIT, UBC

Mammoli, Andrea; Vorobieff, Peter; Barsun, Hans; Burnett, Rick; Fisher, Daniel. 2010. Energetic, economic and environmental performance of a solar-thermal-assisted HVAC system. *Energy and Buildings* 9: 1524-1535
Available at: BCIT, UBC
Available at: BCIT, UBC

Available at: UBC

Available at: BCIT, UBC

Muratori, Matteo; Roberts, Matthew C.; Sioshansi, Ramteen; Marano, Vincenzo; Rizzoni, Giorgio. 2013. A highly resolved modeling technique to simulate residential power demand. *Applied Energy* 0: 465-473
Available at: UBC

Available at: UBC

Available at: UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Orr, Harold; Wang, Jieying; Fetsch, Dave; Dumont, Rob. 2013. Technical note: Airtightness of older-generation energy-efficient houses in Saskatoon. *Journal of Building Physics* 3: 294-307
Available at: UBC

Available at: BCIT, UBC
Rastegar, Mohammad; Fotuhi-Firuzabad, Mahmud; Aminifar, Farrokh. 2012. Load commitment in a smart home. *Applied Energy* 0: 45-54
Available at: UBC

Available at: BCIT, UBC

Samuel, D. G. Leo; Nagendra, S. M. Shiva; Maiya, M. P.. 2013. Passive alternatives to mechanical air conditioning of building: A review. *Building and Environment* 0: 54-64
Available at: BCIT, UBC

Available at: BCIT, UBC

Shipworth, Michelle; Firth, Steven K.; Gentry, Michael I.; Wright, Andrew J.; Shipworth, David T.; Lomas, Kevin J.. 2010. Central heating thermostat settings and timing: building demographics. *Building Research & Information* 1: 50-69

Available at: BCIT, UBC

Available at: BCIT, UBC

Stevenson, Fionn; Carmona-Andreu, Isabel; Hancock, Mary. 2013. The usability of control interfaces
Ventilation, Indoor Moisture Loads, Humidity Control, and Energy Efficiency

Available at: UBC

Available at: UBC

Thermal Insulation

Moisture Performance

Available at: UBC

Available at: HPO, BCIT

Available at: BCIT, UBC

Thermal Performance

Available at: UBC

Kaye, N. B. and G. R. Hunt. 2010. The effect of floor heat source area on the induced airflow in a
Ventilation, Indoor Moisture Loads, Humidity Control, and Energy Efficiency

room. Building and Environment 45(4): 839-847
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Air Leakage

Bohac, David L; Fitzgerald, James E; Hewett, Martha J; Grimsrud, David. 2007. Measured Change in Multifamily Unit Air Leakage and Airflow Due to Air Sealing and Ventilation Treatments. Thermal Performance of Exterior Envelopes of Whole Buildings X International Conference Florida, U.S.A.

Available at: BCIT, UBC
Available at: BCIT, UBC

Delموتte, C.; Caillou, S. et. al.. 2008. Determination of air permeability of buildings according to ISO 9972 or EN 1 3 829 - Proposal for clarifications. *Proceedings of AIVC 29th Conference: Advanced building ventilation and environmental technology for addressing climate change issues* Kyoto, Japan

Available at: BCIT, CMHC, HPO

Available at: BCIT, UBC

Available at: BCIT, CMHC, HPO

Jeff Speert ; Cory Legge. 2012. Informed Mechanical Design Through Tested Air Leakage Rates. *Building Enclosure Science & Technology Conference (BEST3) Atlanta, GA*

Available at: UBC

Kim, K.W. and Yeo, M.S. . 2007. Air-related problems in high-rise buildings: How can we cope with the problems due to stack effect?. *Proceedings of AIVC 28th Conference and Palenc 2nd conference: Building Low Energy Cooling and Ventilation Technologies in the 21st Century Crete Island, Greece*
Ventilation, Indoor Moisture Loads, Humidity Control, and Energy Efficiency

Lee, Joonghoon; Song, Doosam; Park, Dongryul. 2010. A study on the development and application of the E/V shaft cooling system to reduce stack effect in high-rise buildings. *Building and Environment* 2: 311-319
Available at: BCIT, UBC

Available at: UBC

Available at: Lstiburek, J. W.

Available at: BCIT, UBC

Available at: Public Libraries of B.C., ASHRAE

Available at: BCIT, UBC

Available at: HPO, BCIT

Available at: HPO, BCIT

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Relander, Thor-Oskar; Holos, Sverre; Thue, Jan Vincent. 2012. irtightness estimation - A state of the art review and an en route upper limit evaluation principle to increase the chances that wood-frame houses with a vapour- and wind-barrier comply with the airiti. *Energy and Buildings* 0: 444-452
Available at: BCIT, UBC

Sandberg, Per Ingvar; Wahlgren, Paula; Bankvall, Claes; Larsson, Bengt; Sikander, Eva. 2007. The Effects and Cost Impact of Poor Airtightness - Information for Developers and Clients. *Thermal Performance of Exterior Envelopes of Whole Buildings X International Conference Florida, U.S.A.*

Ventilation, Indoor Moisture Loads, Humidity Control, and Energy Efficiency

Waite, Michael B.; Sean M. OBrien . 2010. Air leakage: difficulties in measurement, quantification and energy simulation. *Building Enclosure Science & Technology Conference (BEST2) Portland, OR*

Ventilation, Indoor Moisture Loads, Humidity Control

Ai, ZT; Mak, CM; Niu, JL; Li, ZR. 2011. Effect of balconies on thermal comfort in wind-induced, naturally ventilated low-rise buildings. *Building Services Engineering Research and Technology* 3: 277-292 Available at: BCIT, UBC

Andreas Holm ; Hartwig M. Kunze ; Klaus Sedlbauer . 2008. The Impact of the Indoor Climate on the

Available at: BCIT, UBC

Available at: Public Libraries of B.C., ASHRAE

Available at: Public Libraries of B.C.

Available at: BCIT, UBC

Available at: Public Libraries of B.C., ASHRAE

Available at: BCIT, UBC

Available at: UBC

Available at: BCIT, UBC

Available at: Public Libraries of B.C., ASHRAE

Bastani, A., C.-S. Lee, et al.. 2010. Assessing the performance of air cleaning devices -
Ventilation, Indoor Moisture Loads, Humidity Control, and Energy Efficiency

full-scale test method. Building and Environment 45(1): 143-149
Available at: BCIT, UBC

Beccali, Marco; Finocchiaro, Pietro; Nocke, Bettina. 2012. Energy performance evaluation of a demo solar desiccant cooling system with heat recovery for the regeneration of the adsorption material. Renewable Energy 0: 40-52
Available at: UBC

Beko, Gabriel; Toftum, Jorn; Clausen, Geo. 2011. Modeling ventilation rates in bedrooms based on building characteristics and occupant behavior. Building and Environment 11: 2230-2237
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: Public Libraries of B.C.

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Caciolo, Marcello; Cui, Shuqing; Stabat, Pascal; Marchio, Dominique. 2013. Development of a new correlation for single-sided natural ventilation adapted to leeward conditions. *Energy and Buildings* 0: 372-382

Causone, Francesco; Baldin, Fabio; Olesen, Bjarne W.; Corgnati, Stefano P.. 2010. Floor heating and cooling combined with displacement ventilation: Possibilities and limitations. *Energy and Buildings* 12: 2338-2352

Ventilation, Indoor Moisture Loads, Humidity Control, and Energy Efficiency

Environment 12: 2590-2597
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: Public Libraries of B.C., ASHRAE

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC
Available at: BCIT, UBC

Available at: HPO, BCIT

Available at: UBC

Available at: BCIT, UBC

Das, Payel; Chalabi, Zaid; Jones, Benjamin; Milner, James; Shrubsole, Clive; Davies, Michael; Hamilton, Ian; Ridley, Ian; Wilkinson, Paul. 2013. Multi-objective methods for determining optimal ventilation rates in dwellings. *Building and Environment* 0: 72-81
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC
Ventilation, Indoor Moisture Loads, Humidity Control, and Energy Efficiency

Fabi, Valentina; Andersen, Rune Vinther; Corgnati, Stefano Paolo. 2012. Main physical environmental variables driving occupant behaviour with regard to natural ventilation. 5th International Building Physics Conference (IBPC) Kyoto, Japan

Gendebien, Samuel; Bertagnolio, Stephane; Lemort, Vincent. 2013. Investigation on a ventilation heat recovery exchanger: Modeling and experimental validation in dry and partially wet conditions. Energy and Buildings 0: 176-189 Available at: BCIT, UBC

Han, Hwataik; Shin, Cheol-Yong; Lee, In-Bok; Kwon, Kyeong-Seok. 2011. Tracer gas experiment for local mean ages of air from individual supply inlets in a space with multiple inlets. Building and
Ventilation, Indoor Moisture Loads, Humidity Control, and Energy Efficiency

Environment 12: 2462-2471
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: Public Libraries of B.C.

Available at: HPO, BCIT

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: UBC

Ventilation, Indoor Moisture Loads, Humidity Control, and Energy Efficiency

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

the efficiency of chemical filters for the removal of airborne molecular contaminants (AMCs) in
the make-up air unit (MAU) of a cleanroom. *Building and Environment* 45(4): 929-935
Available at: BCIT, UBC

ventilators. *Building and Environment* 38(8): 981-993
Available at: UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

buildings with operable façade elements. *Building and Environment* 1: 266-279
Available at: BCIT, UBC

Kaye, N. B. and G. R. Hunt. 2010. The effect of floor heat source area on the induced airflow in a
room. *Building and Environment* 45(4): 839-847
Available at: BCIT, UBC

Kent, A.D., G.O. Handegord and D.R. Robson. 1996. A study of humidity variations in Canadian
houses. *ASHRAE Transactions* 72(2): 11.1.1-11.1.8
Available at: BCIT, UBC

Khan, N., Y. Su, et al. . 2008. A review on wind driven ventilation techniques.. *Energy and
Building* 40(8): 1586-1604
Available at: BCIT, UBC

Kim, Sang-Min; Lee, Ji-Hyun; Moon, Hyeun Jun; Kim, Sooyoung. 2012. Improvement of Indoor Living
Environment by Occupants’s™ Preferences for Heat Recovery Ventilators in High-Rise Residential
Buildings. *Indoor and Built Environment* 4: 486-502
Available at: UBC

Kim, Taeyeon; Park, Beung-Yong; Cheong, Chang Heon. 2012. Ventilation Systems to Prevent Food
Odour Spread in High-rise Residential Buildings. *Indoor and Built Environment* 2: 304-316
Available at: UBC

Kolarik, B., P. Wargocki, et al.. 2010. The effect of a photocatalytic air purifier on indoor air
quality quantified using different measuring methods. *Building and Environment* 45(6): 1434-1440
Available at: BCIT, UBC
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Laverge, Jelle; Janssens, Arnold; Taelman, Joani. 2012. Demand controlled residential ventilation: field tests. *5th International Building Physics Conference (IBPC) Kyoto, Japan*

Lee, Hyunsoo; Lee, Youn Jae; Park, So Yun; Kim, Yu Won; Lee, Yeunsook. 2012. The Improvement of Ventilation Behaviours in Kitchens of Residential Buildings. *Indoor and Built Environment* 1: 48-61
Available at: UBC

Available at: BCIT, UBC
Available at: BCIT, UBC

Available at: UBC

Available at: Public Libraries of B.C., ASHRAE

Liang Xia; Shiming Deng; Chan, M.Y.. 2010. Effect of the Indoor Environment on the Condensing Rate and the Air-side Sensible Heat Transfer Resistance of a Direct Expansion Cooling Coil. *Indoor and Built Environment* 5: 513-519
Available at: UBC

Available at: Public Libraries of B.C.

Available at: BCIT, UBC

Lim, Tae Sub; Schaefer, Laura; Kim, Jeong Tai; Kim, Gon. 2012. Energy Benefit of the Underfloor Air Distribution System for Reducing Air-Conditioning and Heating Loads in Buildings. *Indoor and Built Environment* 1: 62-70
Available at: UBC

Available at: BCIT, UBC

Ventilation, Indoor Moisture Loads, Humidity Control, and Energy Efficiency

Available at: BCIT, UBC

Available at: BCIT, UBC

Liu, Guopeng; Liu, Mingsheng. 2011. A rapid calibration procedure and case study for simplified simulation models of commonly used HVAC systems. *Building and Environment* 2: 409-420
Available at: BCIT, UBC

Liu, Shichao; Mak, C. M.; Niu, JianLei. 2011. Numerical evaluation of louver configuration and ventilation strategies for the windcatcher system. *Building and Environment* 8: 1600-1616
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: UBC

Lstiburek, J.. 2002. Air pressure and building enclosures. *Building Science Corporation*

Lstiburek, J.. 2005. Multifamily ventilation. *Building Science Corporation*

Lstiburek, J.. 2006. Understanding ventilation. *Building Science Corporation*

Available at: BCIT, UBC

Available at: BCIT, UBC

Lu, T., A. Knuutila, et al.. 2010. A novel methodology for estimating space air change rates and
occupant CO2 generation rates from measurements in mechanically-ventilated buildings. *Building and Environment* 45(5): 1161-1172
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Ma, Xiaojun; Li, Xianting; Shao, Xiaoliang; Jiang, Xuan. 2013. An algorithm to predict the transient moisture distribution for wall condensation under a steady flow field. *Building and Environment* 0: 56-68
Available at: BCIT, UBC

Magnier, Laurent; Zmeureanu, Radu; Derome, Dominique. 2011. Experimental Study of the Temperature and Velocity Fields Produced by a Displacement Ventilation Diffuser. *ASHRAE Transactions* 2: 199
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: UBC

Available at: UBC

Meggers, Forrest; Bruelisauer, Marcel; Schlueter, Arno; Baldini, Luca; Leibundgut, Hansjörg.
2012. Air conditioning without so much air â€“ Low exergy decentralized ventilation and radiant cooling systems. *5th International Building Physics Conference (IBPC) Kyoto, Japan*

Mlecnik, E. et. al.. 2008. Indoor climate systems in passive houses. *Proceedings of AIVC 29th Conference: Advanced building ventilation and environmental technology for addressing climate change issues Kyoto, Japan*

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Noh, Kwang-Chul; Hwang, Jungho. 2010. The Effect of Ventilation Rate and Filter Performance on Indoor Particle Concentration and Fan Power Consumption in a Residential Housing Unit. *Indoor and Built Environment* 4: 444-452
Available at: UBC

Available at: BCIT, UBC

Park, So Jeong; Joe, Goo Sang; Shin, Dae Uk; Kim, Tae Hyun; Yeo, Myoung Souk; Kim, Kwang Woo. 2012. A Study on the Application Method of Radiant Heating Panels to Prevent Downdraft in Glass Curtain-wall Buildings. *5th International Building Physics Conference (IBPC) Kyoto, Japan*

Ventilation, Indoor Moisture Loads, Humidity Control, and Energy Efficiency

Available at: BCIT, UBC

Platt, Glenn; Li, Jiaming; Li, Ronxin; Poulton, Geoff; James, Geoff; Wall, Josh. 2010. Adaptive HVAC zone modeling for sustainable buildings. *Energy and Buildings* 4: 412-421
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: UBC

Available at: UBC

Available at: CMHC

Available at: BCIT, UBC

Available at: BCIT, UBC

Envelopes of Whole Building X Florida, USA

Available at: Public Libraries of B.C.

Available at: BCIT, UBC

Available at: Public Libraries of B.C.

Sawada, Masae; Kotani, Hisashi; Momoi, Yoshihisa; Sagara, Kazunobu; Yamanaka, Toshio. 2012. Short-circuit Problem of Diffused Airflow by Packaged Air Conditioners. *5th International Building Physics Conference (IBPC) Kyoto, Japan*

Schulze, Tobias; Eicker, Ursula. 2013. Controlled natural ventilation for energy efficient buildings. *Energy and Buildings* 0: 221-232
Available at: BCIT, UBC

Available at: UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: UBC

Available at: BCIT, UBC

Available at: HPO, BCIT

Available at: BCIT, UBC

Available at: BCIT, UBC
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: UBC

Available at: Public Libraries of B.C., ASHRAE

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: Public Libraries of B.C.

Ventilation, Indoor Moisture Loads, Humidity Control, and Energy Efficiency

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: UBC

Available at: BCIT, UBC

Turner, William J. N.; Logue, Jennifer M.; Wray, Craig P.. 2013. A combined energy and IAQ assessment of the potential value of commissioning residential mechanical ventilation systems. Building and Environment 0: 194-201
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: UBC

Available at: Public Libraries of B.C.

Ventilation, Indoor Moisture Loads, Humidity Control, and Energy Efficiency

Florida, USA

Available at: BCIT, UBC

Wang, Xiaolin; Bierwirth, Alex; Christ, Alexander; Whittaker, Peter; Regenauer-Lieb, Klaus; Chua, Hui Tong. 2013. Application of geothermal absorption air-conditioning system: A case study. *Applied Thermal Engineering* 1: 71-80
Available at: UBC

Available at: BCIT, UBC

Available at: Public Libraries of B.C.

Available at: BCIT, CMHC, HPO

Available at: BCIT

Available at: Public Libraries of B.C.

Available at: Public Libraries of B.C.

Available at: BCIT, UBC
Ventilation, Indoor Moisture Loads, Humidity Control, and Energy Efficiency

Wu, Xiaozhou; Olesen, Bjarne W.; Fang, Lei; Zhao, Jianing. 2013. A nodal model to predict vertical temperature distribution in a room with floor heating and displacement ventilation. *Building and Environment* 0: 626-634
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: Public Libraries of B.C.

Available at: BCIT, UBC

Conference (IBPC) Kyoto, Japan

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Zhong, Ke; Yang, Xiufeng; Feng, Wei; Kang, Yanming. 2012. Pollutant dilution in displacement natural ventilation rooms with inner sources. *Building and Environment* 0: 108-117
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Energy Efficiency

Available at: BCIT, UBC
Available at: BCIT, UBC

Available at: BCIT, UBC

Ahmad, Muhammad Waseem; Eftekhar, Mahroo; Steffen, Thomas; Danjuma, Abdulhameed Mambo. 2013. Investigating the performance of a combined solar system with heat pump for houses. *Energy and Buildings* 0: 138-146
Available at: BCIT, UBC

Alahmad, Mahmoud; Nader, Wisam; Cho, Yong; Shi, Jonathan; Neal, Jill. 2011. Integrating physical and virtual environments to conserve energy in buildings. *Energy and Buildings* 12: 3710-3717
Available at: BCIT, UBC

Allegrini, Jonas; Dorer, Viktor; Carmeliet, Jan. 2012. Influence of the urban microclimate in street canyons on the energy demand for space cooling and heating of buildings. *Energy and Buildings* 0: 823-832
Available at: BCIT, UBC

Allen, Duane; Stine, Todd; Avery, Jack; Marseille, Tom; Boysen, Tom; Paulson, Kimberly; Chaloeicheep, Charles; Chatto, Christopher Flint. 2012. Integrated Design-Build Delivery Team Achieves Aggressive Building Energy Performance Goals. *ASHRAE Transactions* 1: 98-105
Available at: BCIT, UBC

Available at: BCIT, UBC

Ventilation, Indoor Moisture Loads, Humidity Control, and Energy Efficiency

Available at: BCIT, UBC

Available at: BCIT, UBC

Antonyova, Anna; Korjenic, Azra; Antony, Peter; Korjenic, Sinan; Pavlusova, Erika; Pavlus, Miron; Bednar, Thomas. 2013. Hygrothermal properties of building envelopes: Reliability of the effectiveness of energy saving. *Energy and Buildings* 0: 187-192
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: UBC

Available at: UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: UBC

Available at: BCIT, UBC

Bizzarri, Giacomo. 2011. Local energy policies for Kyoto goals: Ecoabita protocol a key action to reduce energy consumption in residential sector. *Energy and Buildings 9: 2394-2403* Available at: BCIT, UBC

Blanco, David L.; Nagano, Katsunori; Morimoto, Masahiro. 2013. Experimental study on a monovalent inverter-driven water-to-water heat pump with a desuperheater for low energy houses. *Applied Thermal Engineering 1: 826-836* Available at: UBC

Bojic, Milorad; Miletic, Marko; Malesevic, Jovan; Djordjevic, Slobodan; Cvetkovic, Dragan. 2012. Influence of additional storey construction to space heating of a residential building. *Energy and Buildings 0: 511-518* Available at: BCIT, UBC

Bonino, Dario; Corno, Fulvio; De Russis, Luigi. 2012. Home energy consumption feedback: A user survey. *Energy and Buildings 0: 383-393* Available at: BCIT, UBC

Bostanciog.; lu, E.. 2010. Effect of building shape on a residential buildings construction,
energy and life cycle costs. Architectural Science Review 4: 441-467
Available at: UBC

Available at: UBC

Available at: UBC

Burbank, Jason J.; Marmaras, Justin M.; Kosanovic, Dragoljub B.. 2013. Dedicated Outside Air System (DOAS) - Design vs. Actual Operation (Are Aggressive Energy Targets Achievable?). ASHRAE Transactions 1: 1-8
Available at: BCIT, UBC

Burnett, Eric; Warren Knowles; Graham Finch; Marcus Dell. 2011. Energy consumption in mid- to high-rise residential buildings both before and after enclosure rehabilitation - a top-down approach. 13th Canadian Conference on Building Science and Technology (CCBST) Winnipeg, MB

Available at: UBC

Available at: BCIT, UBC

Chen, Dong; Wang, Xiaoming; Ren, Zhengen. 2012. Selection of climatic variables and time scales for future weather preparation in building heating and cooling energy predictions. Energy and Buildings 0: 223-233
Available at: BCIT, UBC

Available at: UBC

Chesne, Lou; Duforestel, Thierry; Roux, Jean-Jacques; Rusaouen, Gilles. 2012. Energy saving and
environmental resources potentials: Toward new methods of building design. *Building and Environment* 0: 199-207
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Christensen, Jorgen E.; Rosa, Alessandro Dalla; Nagla, Inese. 2012. Integration of Building energy and energy supply simulations for low-energy district heating supply to energy-efficient buildings. *5th International Building Physics Conference (IBPC) Kyoto, Japan*

Available at: Public Libraries of B.C.

Available at: UBC

Available at: BCIT, UBC
Ventilation, Indoor Moisture Loads, Humidity Control, and Energy Efficiency

Available at: BCIT, UBC

DallO, Giuliano; Galante, Annalisa; Torri, Marco. 2012. A methodology for the energy performance classification of residential building stock on an urban scale. *Energy and Buildings* 0: 211-219
Available at: BCIT, UBC

Available at: BCIT, UBC

Delghust, Marc; Laverge, Jelle; Janssens, Arnold; Van Erck, Charline; Taelman, Charlotte. 2012. The influence of user behaviour on energy use in old dwellings: case-study analysis of a social housing neighbourhood. *5th International Building Physics Conference (IBPC) Kyoto, Japan*

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: HPO, BCIT

Available at: BCIT, UBC

Available at: BCIT, UBC

Ding, Yan; Fu, Qiang; Tian, Zhe; Li, Meixia; Zhu, Neng. 2013. Influence of indoor design air parameters on energy consumption of heating and air conditioning. *Energy and Buildings* 0: 78-84
Available at: BCIT, UBC

Dorn, Markus; Morishita, Naomi; Korjenic, Azra; Bednar, Thomas. 2012. The combined impact of thermal renovations and user behaviour on predicting residential heating energy use. *5th International Building Physics Conference (IBPC) Kyoto, Japan*

Dovjak, Mateja; Shukuya, Masanori; Krainer, Ales. 2012. Analysis of building envelope characteristics at different locations towards rational building energy use and thermal comfort conditions. *5th International Building Physics Conference (IBPC) Kyoto, Japan*

Duanmu, Lin; Wang, Zhenjiang; Zhai, Zhiqiang John; Li, Xiangli. 2013. A simplified method to predict hourly building cooling load for urban energy planning. *Energy and Buildings* 0: 281-291 Available at: BCIT, UBC

Elsawaf, Nehad; Abdel-Salam, Tarek; Abaza, Hussein. 2013. Economic evaluation and calculations of energy savings by upgrading the heating systems in pre manufactured homes. *Energy and Buildings* 0: 187-193 Available at: BCIT, UBC

Emergy, A.F. and C.J. Kippenhan. 2006. A long term study of residential home heating consumption
and the effect of occupant behavior on homes in the Pacific Northwest constructed according to improved thermal standards. *Energy* 31(5): 677-693
Available at: UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Evins, Ralph; Pointer, Philip; Vaidyanathan, Ravi; Burgess, Stuart. 2012. A case study exploring regulated energy use in domestic buildings using design-of-experiments and multi-objective optimisation. *Building and Environment* 0: 126-136
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Filik, Ummuhan Basaran; Gerek, Omer Nezih; Kurban, Mehmet. 2011. A novel modeling approach for hourly forecasting of long-term electric energy demand. *Energy Conversion and Management* 1:
Ventilation, Indoor Moisture Loads, Humidity Control, and Energy Efficiency

199-211

Foda, Ehab; Siren, Kai. 2012. Design strategy for maximizing the energy-efficiency of a localized floor-heating system using a thermal manikin with human thermoregulatory control. *Energy and Buildings* 0: 111-121
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Gouveia, Joao Pedro; Fortes, Patricia; Seixas, Julia. 2012. Projections of energy services demand for residential buildings: Insights from a bottom-up methodology. *Energy* 1: 430-442
Available at: UBC

Available at: UBC

Granadeiro, Vasco; Correia, Joao R.; Leal, Vitor M. S.; Duarte, Jose P.. 2013. Envelope-related energy demand: A design indicator of energy performance for residential buildings in early design
Ventilation, Indoor Moisture Loads, Humidity Control, and Energy Efficiency

Available at: BCIT, UBC

Greenberg, Donald; Pratt, Kevin; Hencey, Brandon; Jones, Nathaniel; Schumann, Lars; Dobbs, Justin; Dong, Zhao; Bosworth, David; Walter, Bruce. 2013. Sustain: An experimental test bed for building energy simulation. *Energy and Buildings* 0: 44-57
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Hachem, Caroline; Fazio, Paul; Athienitis, Andreas. 2012. Energy implications and solar energy potential of housing units’ shapes. *5th International Building Physics Conference (IBPC) Kyoto, Japan*

Available at: BCIT, UBC

Available at: UBC

Available at: BCIT, UBC

BSCE, BCIT-HPO 53 May, 2015
Ventilation, Indoor Moisture Loads, Humidity Control, and Energy Efficiency

Available at: BCIT, UBC

Available at: UBC

Available at: UBC

Hong, Won-Kee; Jeong, Su-Young; Park, Seon-Chee; Kim, Jeong Tai. 2012. Experimental investigation of an energy-efficient hybrid composite beam during the construction phase. *Energy and Buildings* 0: 37-47
Available at: BCIT, UBC

Hong, Won-Kee; Park, Seon-Chee; Jeong, Su-Young; Lim, Gyun-Taek. 2012. Investigation of the Energy Efficiency and CO2 Emission Characteristics of Pre-stressed Composite Beams. *Indoor and Built Environment* 1: 163-175
Available at: UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

30329 United States

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Joe, Jaewan; Choi, Wonjun; Kwon, Hansol; Huh, Jung-Ho. 2013. Load characteristics and operation strategies of building integrated with multi-story double skin facade. *Energy and Buildings 0: 185-198*
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Jovanovic, Marina; Turanjanin, Valentina; Bakic, Vukman; Pezo, Milada; Vucevic, Biljana. 2011. Sustainability estimation of energy system options that use gas and renewable resources for domestic hot water production. *Energy 4: 2169-2175*
Available at: UBC

and the effect of thermal mass. *Journal of Building Physics* 32(2) : 101-130
Available at: UBC

Kalz, Doreen E.; Wienold, Jan; Fischer, Martin; Cali, Davide. 2010. Novel heating and cooling concept employing rainwater cisterns and thermo-active building systems for a residential building. *Applied Energy* 2: 650-660
Available at: UBC

Kang, Sae Byul; Kim, Jong Jin; Choi, Kyu Sung; Sim, Bong Suk; Oh, Hong Young. 2013. Development of a test facility to evaluate performance of a domestic wood pellet boiler. *Renewable Energy* 0: 2-7
Available at: UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Ke, Ming-Tsun; Yeh, Chia-Hung; Jian, Jhong-Ting. 2013. Analysis of building energy consumption parameters and energy savings measurement and verification by applying eQUEST software. *Energy and Buildings* 0: 100-107
Available at: BCIT, UBC

Kenway, Steven J.; Scheidegger, Ruth; Larsen, Tove A.; Lant, Paul; Bader, Hans-Peter. 2013. Water-related energy in households: A model designed to understand the current state and simulate possible measures. *Energy and Buildings* 0: 378-389
Available at: BCIT, UBC
Available at: BCIT, UBC

Available at: BCIT, UBC

Kim, Sang-Min; Lee, Ji-Hyun; Kim, Sooyoung; Moon, Hyeun Jun; Cho, Jinsoo. 2012. Determining operation schedules of heat recovery ventilators for optimum energy savings in high-rise residential buildings. *Energy and Buildings* 0: 3-13
Available at: BCIT, UBC

Available at: UBC

Available at: BCIT, UBC

Kondo, Shuhei; Hokoi, Shuichi. 2012. A Model for Predicting Daily Hot Water Consumption. *5th International Building Physics Conference (IBPC) Kyoto, Japan*

Available at: UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Krzaczek, M.; Kowalczyk, Z.. 2011. Thermal Barrier as a technique of indirect heating and cooling
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: UBC

Lawrence, Thomas M.; Watson, Richard T.; Boudreau, Marie- C.; Johnsen, Kyle; Perry, Jason; Ding, Lan. 2012. A new paradigm for the design and management of building systems. *Energy and Buildings* 0: 56-63
Available at: BCIT, UBC

Available at: UBC

Available at: BCIT, UBC

Available at: BCIT, UBC
Ventilation, Indoor Moisture Loads, Humidity Control, and Energy Efficiency

Lertlakkhanakul, Jumphon; Yoon, Seunghyun; Choi, Jinwon. 2010. Developing a Building Energy Management Framework Based on Ubiquitous Sensor Networks. Indoor and Built Environment 1: 192-201
Available at: UBC

Liang, Cai-hua; Zhang, Xiao-song; Li, Xiu-wei; Zhu, Xia. 2011. Study on the performance of a solar assisted air source heat pump system for building heating. Energy and Buildings 9: 2188-2196
Available at: BCIT, UBC

Liang, Zhen; Shen, Heng-gen. 2012. Determining sample size for building energy consumption surveys using statistical theory. Energy and Buildings 0: 533-539
Available at: BCIT, UBC

Available at: BCIT, UBC

Liu, Lanbin; Fu, Lin; Jiang, Yi. 2010. Application of an exhaust heat recovery system for domestic hot water. Energy 3: 1476-1481
Available at: UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: Public Libraries of B.C.

Available at: BCIT, UBC

Available at: BCIT, UBC

Mahdavi, Ardesshir; Doppelbauer, Eva-Maria. 2010. A performance comparison of passive and
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Marianne Touchie, ; Kim Pressnail, ; Erin Dixon, ; Russell Richman,. 2011. Energy retrofitting an historic 1870's solid masonry home using nested thermal envelope design. *13th Canadian Conference on Building Science and Technology (CCBST)* Winnipeg, MB

Marques, Rui Pitanga; Hacon, Derek; Tessarollo, Alexandre; Parise, José Alberto Reis. 2010. Thermodynamic analysis of tri-generation systems taking into account refrigeration, heating and electricity load demands. *Energy and Buildings* 12: 2323-2330
Available at: BCIT, UBC

Available at: BCIT, UBC

Martani, Claudio; Lee, David; Robinson, Prudence; Britter, Rex; Ratti, Carlo. 2012. ENERNET: Studying the dynamic relationship between building occupancy and energy consumption. *Energy and Buildings* 0: 584-591
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: UBC
Available at: UBC

McLoughlin, Fintan; Duffy, Aidan; Conlon, Michael. 2013. Evaluation of time series techniques to characterise domestic electricity demand. *Energy* 0: 120-130
Available at: UBC

Available at: BCIT, UBC

Meier, Alan; Aragon, Cecilia; Peffer, Therese; Perry, Daniel; Pritoni, Marco. 2011. Usability of residential thermostats: Preliminary investigations. *Building and Environment* 10: 1891-1898
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Molinari, Marco; Lazzarotto, Alberto; Bjork, Folke. 2013. The application of the parametric analysis for improved energy design of a ground source heat pump for residential buildings. *Energy and Buildings* 0: 119-128
Available at: BCIT, UBC

Montgomery, James F.; Green, Sheldon I.; Rogak, Steven N.; Bartlett, Karen. 2012. Predicting the energy use and operation cost of HVAC air filters. *Energy and Buildings* 0: 643-650
Available at: BCIT, UBC

Available at: BCIT, UBC

Motte, Fabrice; Notton, Gilles; Cristofari, Christian; Canaletti, Jean-Louis. 2013. A building integrated solar collector: Performances characterization and first stage of numerical
Ventilation, Indoor Moisture Loads, Humidity Control, and Energy Efficiency

Available at: UBC

Available at: BCIT, UBC

Available at: NRC-IRC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: UBC

Oldewurtel, Frauke; Parisio, Alessandra; Jones, Colin N.; Gyalistras, Dimitrios; Gwerder, Markus; Stauch, Vanessa; Lehmann, Beat; Morari, Manfred. 2012. Use of model predictive control and weather forecasts for energy efficient building climate control. *Energy and Buildings* 0: 15-27
Available at: BCIT, UBC

Olesen, B.W. 2008. Applications of radiant floor cooling systems. *Proceedings of AIVC 29th Conference: Advanced building ventilation and environmental technology for addressing climate change issues Kyoto, Japan*

Oral, Gul Koclar; Manioglu, Gulten. 2012. Evaluation of building envelope concerning energy efficiency for heating and cooling. *5th International Building Physics Conference (IBPC) Kyoto, Japan*

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Pagliarini, Giorgio; Rainieri, Sara. 2012. Restoration of the building hourly space heating and cooling loads from the monthly energy consumption. *Energy and Buildings* 0: 348-355
Available at: BCIT, UBC

Ventilation, Indoor Moisture Loads, Humidity Control, and Energy Efficiency

Available at: BCIT, UBC

Available at: HPO, BCIT

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: UBC
Pless, Shanti; Torcellini, Paul; Shelton, Dave. 2011. Using an Energy Performance Based Design-Build Process to Procure a Large Scale Replicable Zero Energy Building. ASHRAE Transactions 1: 373-380
Available at: BCIT, UBC

Prahl, Duncan; Hartman, Thomas R C; Coldham, Bruce; Klingenberg, Katrin. 2007. Small Homes, Excellent Enclosures, Almost No Heating System: Fact or Fiction ?. Thermal Performance of Exterior Envelopes of Whole Buildings X International Conference Florida, U.S.A.

Available at: BCIT, UBC

Privara, Samuel; Vana, Zdenek; Zacekova, Eva; Cigler, Jiji. 2012. Building modeling: Selection of the most appropriate model for predictive control. Energy and Buildings 0: 341-350
Available at: BCIT, UBC

Privara, Samuel; Cigler, Jiri; Vana, Zdenek; Oldewurtel, Frauke; Sagerschnig, Carina; Zacekova, Eva. 2013. Building modeling as a crucial part for building predictive control. Energy and Buildings 0: 8-22
Available at: BCIT, UBC

Available at: BCIT, UBC

Pupeikis, Darius; Burlingis, Arūnas; Stankevičius, Vytautas. 2010. Required additional heating power of building during intermitted heating. Journal of Civil Engineering & Management 1: 141-148

Available at: HPO, BCIT

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Raftery, Paul; Lee, Kwang Ho; Webster, Tom; Bauman, Fred. 2012. Performance analysis of an integrated UFAD and radiant hydronic slab system. *Applied Energy* 1: 250-257
Available at: UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Rasouli, Mohammad; Ge, Gaoming; Simonson, Carey J.; Besant, Robert W.. 2013. Uncertainties in energy and economic performance of HVAC systems and energy recovery ventilators due to uncertainties in building and HVAC parameters. *Applied Thermal Engineering* 1: 732-742
Available at: UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Richardson, Ian; Thomson, Murray; Infield, David; Clifford, Conor. 2010. Domestic electricity use: A high-resolution energy demand model. *Energy and Buildings* 10: 1878-1887
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC
Ventilation, Indoor Moisture Loads, Humidity Control, and Energy Efficiency

Available at: BCIT, UBC

Rysanek, Adam; Booth, Adam; Tian, Wei; Choudhary, Ruchi. 2012. Incorporating climate models into building energy simulation to assess the future impacts and likely adaptation to climate change. *5th International Building Physics Conference (IBPC) Kyoto, Japan*

Available at: BCIT, UBC

Available at: BCIT, UBC

Sanaye, Sepehr; Mahmoudimehr, Javad; Aynechi, Mohsen. 2012. Modelling and economic optimisation of under-floor heating system. *Building Services Engineering Research and Technology* 2: 191-202
Available at: BCIT, UBC

Schub, Matthias; Orehounig, Kristina; Mahdavi, Ardeshir. 2012. Predictive simulation-powered passive cooling in buildings: from concept to realization. *5th International Building Physics Conference (IBPC) Kyoto, Japan*

Schweiker, Marcel; Shukuya, Masanori. 2010. Comparative effects of building envelope improvements and occupant behavioural changes on the exergy consumption for heating and cooling. *Energy Policy* 6: 2976-2986
Available at: BCIT, UBC

Available at: UBC

Available at: BCIT, UBC

Sidheswaran, Meera A.; Destaillats, Hugo; Sullivan, Douglas P.; Cohn, Sebastian; Fisk, William J.. 2012. Energy efficient indoor VOC air cleaning with activated carbon fiber (ACF) filters. *Building and Environment* 0: 357-367
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Smith, Aaron; Fumo, Nelson; Luck, Rogelio; Mago, Pedro J.. 2011. Robustness of a methodology for
Available at: BCIT, UBC

Available at: BCIT, UBC

Sozer, Hatice. 2010. Improving energy efficiency through the design of the building envelope. *Building and Environment* 12: 2581-2593
Available at: BCIT, UBC

Available at: UBC

Available at: UBC

Available at: BCIT, UBC
Ventilation, Indoor Moisture Loads, Humidity Control, and Energy Efficiency

Sui, Xuemin; Zhang, Xu. 2012. Effects of radiant terminal and air supply terminal devices on energy consumption of cooling load sharing rate in residential buildings. *Energy and Buildings* 0: 499-508 Available at: BCIT, UBC

Tardif ing, Michel; Pope, Stephen; Lubun, Mike. 2011. From High Performance toward Net-zero Energy Buildings in Canada: Overview and Long-Term Perspective. *ASHRAE Transactions* 2: 349 Available at: BCIT, UBC

Ventilation, Indoor Moisture Loads, Humidity Control, and Energy Efficiency

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

van Ruijven, Bas; de Vries, Bert; van Vuuren, Detlef P.; van der Sluijs, Jeroen P.. 2010. A global model for residential energy use: Uncertainty in calibration to regional data. Energy 1: 269-282
Available at: UBC

Vassileva, Iana; Dahlquist, Erik; Wallin, Fredrik; Campillo, Javier. 2013. Energy consumption feedback devices' impact evaluation on domestic energy use. *Applied Energy* 0: 314-320
Available at: UBC

Available at: BCIT

Available at: UBC

Available at: BCIT, UBC

Verhelst, Clara; Logist, Filip; Van Impe, Jan; Helsen, Lieve. 2012. Study of the optimal control problem formulation for modulating air-to-water heat pumps connected to a residential floor heating system. *Energy and Buildings* 0: 43-53
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Wang, Huajun; Zhao, Qian; Wu, Juntao; Yang, Bin; Chen, Zhihao. 2013. Experimental investigation on the operation performance of a direct expansion ground source heat pump system for space heating. *Energy and Buildings* 0: 349-355
Available at: BCIT, UBC

Wang, Qin; Liu, Yu-qian; Liang, Guo-feng; Li, Jia-rong; Sun, Shu-fei; Chen, Guang-ming. 2011. Development and experimental validation of a novel indirect-expansion solar-assisted...
Available at: BCIT, UBC

Available at: BCIT, UBC

Wang, Xiao; Zheng, Maoyu; Zhang, Wenyong; Zhang, Shu; Yang, Tao. 2010. Experimental study of a solar-assisted ground-coupled heat pump system with solar seasonal thermal storage in severe cold areas. *Energy and Buildings* 11: 2104-2110
Available at: BCIT, UBC

Wang, Yong; Wong, Kelvin K. L.; Liu, Qing-hua; Jin, Yi-tao; Tu, Jiyuan. 2012. Improvement of energy efficiency for an open-loop surface water source heat pump system via optimal design of water-intake. *Energy and Buildings* 0: 93-100
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: UBC

Available at: BCIT, UBC

Xu, Baoping; Huang, Ang; Fu, Lin; Di, Hongfa. 2011. Simulation and analysis on control effectiveness of TRVs in district heating systems. *Energy and Buildings* 5: 1169-1174
Available at: BCIT, UBC
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Yang, Liu; Yan, Haiyan; Xu, Ying; Lam, Joseph C.. 2013. Residential thermal environment in cold climates at high altitudes and building energy use implications. *Energy and Buildings* 0: 139-145
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Yang, Xiaoshan; Zhao, Lihu; Bruse, Michael; Meng, Qinglin. 2012. An integrated simulation method for building energy performance assessment in urban environments. *Energy and Buildings* 0: 243-251
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: UBC

Ventilation, Indoor Moisture Loads, Humidity Control, and Energy Efficiency

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: UBC

Yun, Geun Young; Kim, Hyoin; Kim, Jeong Tai. 2012. Effects of occupancy and lighting use patterns on lighting energy consumption. *Energy and Buildings* 0: 152-158
Available at: BCIT, UBC

Available at: UBC

Zemella, Giovanni; De March, Davide; Borrotti, Matteo; Poli, Irene. 2011. Optimised design of energy efficient building façades via Evolutionary Neural Networks. *Energy and Buildings* 12: 3297-3302
Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC

Available at: BCIT, UBC